Зачем мы дышим? Животные которым не нужен кислород

Кислород обязательно входит в состав живого вещества. Вряд ли он может быть заменен в живых системах каким-нибудь другим элементом.

Но помимо кислорода, связанного химически, подавляющее большинство организмов нуждается и в свободном молекулярном кислороде для дыхания.

То, что в дыхании используется именно кислород, а не другие газы, объясняется его свойствами: кислород легко вступает в химические соединения с многими веществами, и эти реакции сопровождаются выделением тепловой энергии. Иногда, например, у светящихся животных и бактерий выделяется также и световая энергия. Нет другого такого вещества, которое, вступая в реакции с веществами организма, обеспечило бы освобождение столь больших количеств энергии.

Кислород атмосферы особенно необходим высшим животным. Птицы и сухопутные млекопитающие не могут прожить без него даже нескольких минут. Водные млекопитающие, приспособленные к длительному пребыванию под водой (от 15 минут до 1 часа 45 минут), фактически используют его не меньше, так как создают запас воздуха в легких.

Таким образом, на планетах, атмосфера которых лишена или содержит мало кислорода, вряд ли могут быть существа, сходные с животными Земли. Впрочем, не будем предрешать вопрос и посмотрим, может ли вообще существовать жизнь без атмосферного кислорода или при его незначительном количестве.

По мнению ряда ученых, кислород в атмосфере Земли появился в результате жизнедеятельности зеленых растении. По-видимому, когда жизнь на нашей планете только зарождалась, кислорода в ее атмосфере не было. Первые организмы, из которых впоследствии возникли растения, не нуждались в свободном кислороде, они были анаэробными. Первичные зеленые растения, очевидно, тоже еще не обладали функцией дыхания. Этот процесс возник только на следующей ступени эволюции.

Среди современных организмов имеется тоже немало анаэробных. Таковы некоторые бактерии, дрожжи. Они не дышат кислородом, а получают энергию от окисления различных веществ. Это - «бескислородное дыхание», или брожение. Есть виды микробов, для которых кислород ядовит и вызывает гибель; есть и такие, которые могут жить без кислорода, но когда он есть, используют его для дыхания, идущего наряду с брожением.

У зеленых растений и низших животных отношение к кислороду тоже чрезвычайно разнообразно. Все зеленые растения дышат, но колебания количества кислорода в окружающей среде не оказывают заметного влияния на интенсивность дыхания. Лишь при уменьшении содержания его в атмосфере до 2-1% (в 10-20 раз меньше нормы) интенсивность дыхания большинства видов растений снижается. При этом начинается анаэробный обмен, за счет которого растение может жить некоторое время и при полном отсутствии кислорода

Потребность в кислороде у водных растений еще меньше, так как вода содержит обычно значительно меньше кислорода, чем атмосфера. В воде некоторых водоемов кислорода оказывается в 2000 раз меньше, чем в воздухе.

Наконец, некоторые новые исследования показывают, что во внутренних тканях растении состав газовой среды нередко лишен даже отдаленного сходства с обычным составом воздуха Дыхание здесь близко к анаэробному Среди животных многие простейшие и многоклеточные беспозвоночные тоже живут и размножаются при ничтожном количестве кислорода и даже при полном его отсутствии Десятки видов и инфузорий, амебы и жгутиконосцы, живущие в почти лишенных кислорода илах, в сточных водах, в стоячей воде озер, находятся постоянно по существу в анаэробных условиях Большинство из них может жить и в присутствии кислорода, но из среды, богатой кислородом, их вытесняют другие организмы.

При ничтожном содержании или даже при полном отсутствии кислорода в среде могут жить некоторые круглые черви, виды ракообразных (например, веслоногие) и пластинчатожаберных моллюсков Даже среди насекомых имеются водные формы, которые живут при недостатке или при отсутствии кислорода в воде Это, например, личинки одного вида жука (Donacia), комара хирономуса (Chironomus thummi) и другие Развитие личинок хирономуса может дойти до окрыления в воде, содержащей 0,3 мг кислорода на литр, т. е. в 1000 раз меньше, чем в обычном воздухе

Все высшие позвоночные нуждаются в кислороде для дыхания, но и у них отдельные клетки тела могут временно переходить на анаэробный обмен, а клетки некоторых тканей вообще нуждаются в небольшом количестве кислорода По существу только клетки центральной нервной системы позвоночных животных очень чувствительны к недостатку кислорода.

Потребность в кислороде у человека и высших животных тоже колеблется в зависимости от приспособления к той или ином среде.

Овцы, привычные к горным условиям, нормально себя чувствуют на высоте 4000 м, где кислорода на 35-40% меньше, чем на уровне моря.

Около, 6000 м над уровнем моря лежит высшая граница жизни для большинства животных. На такой большой высоте встречаются лишь немногие виды мышевидных грызунов и хищных птиц. Но вряд ли только разреженная атмосфера и недостаток кислорода препятствуют их жизни еще больше. Мешают развитию жизни здесь, конечно, низкие температуры и вечные льду, отсутствие почвы и растительной пищи, сильные ветры и т. д.

Для человека, приспособленного к жизни на равнине, уменьшение давления и количества кислорода вызывает тяжелые расстройства - горную болезнь. Однако после специальной тренировки человек может подняться и пробыть некоторое время на высоте 7000-8000 м. На высотах Тибета и в Андах (на высоте 5300 м) существуют постоянные людские поселения, показывающие, что человек может приспособиться к вдвое меньшему содержанию кислорода в атмосфере по сравнению с тем, которое имеется на уровне моря.

У этих людей все ткани тела гораздо энергичнее поглощают кислород, у них повышены содержание гемоглобина и кислородная емкость крови.

В опытах с животными выяснено, что при акклиматизации в горных условиях в организме происходит энергичная «борьба» за доставку кислорода в ткани. Клетки начинают более полно использовать кислород благодаря повышению активности окислительных ферментов Кроме того, ткани становятся выносливее к недостатку кислорода и могут даже переходить на анаэробный тип дыхания.

В лабораторных условиях проводились исследования на насекомых, оказалось, что у видов насекомых, живущих на уровне моря, где давление около 760 мм ртутного столба, работа сердца прекращается при давлении 25-20 мм ртутного столба Они еще могут жить, если кислорода будет в 30 раз меньше, чем в атмосфере Но гораздо устойчивее виды, обитающие в горах на высоте 1000 м. Пульсация сердца у них еще наблюдалась при давлении в 15 мм ртутного столба У насекомых обитателей еще больших высот (3200 м) сердце останавливалось лишь при давлении 5 мм ртутного столба, т.е. при таком разрежении атмосферы, которое существует примерно на высоте 100-200 км от Земли.

Итак, возможности жить при недостатке кислорода у земных организмов достаточно велики. Но при этом у большинства из них резко снижается активность. Не забегая вперед и не вдаваясь в обсуждение вопроса о жизни вне Земли, все же укажем, что, например, на Марсе потребность организмов в кислороде, при той же энергии жизнедеятельности, может быть меньше, чем на Земле. Дело в том, что вследствие меньших размеров и меньшей плотности Марса сила тяжести из нем почти в 3 раза меньше, чем на Земле, и для работы органов потребуется значительно меньше энергии, получаемой благодаря дыханию. Кроме того, при низкой температуре среды ткани и клетки насыщаются кислородом при меньшем его количестве в среде.

Известно, наконец, что клетки организмов способны накапливать и использовать элементы, находящиеся в природе в чрезвычайно малых количествах, в рассеянном состоянии. Поэтому не будет удивительным, если при малом количестве кислорода в среде у организмов возникнут различные приспособления к улавливанию кислорода.

Значит, если на планетах, доступных нашему изучению, кислорода настолько мало, что его не удается обнаружить с Земли с помощью спектрального анализа, это еще не основание, чтобы отрицать возможность на них жизни. Конечно, малое количество кислорода ставит границы для существования животных, подобных нашим позвоночным, с их высоким энергетическим уровнем обмена веществ и высшей нервной деятельностью. Но организмы другого строения могут существовать.

Суждение о том, какова может быть жизнь при малом количестве кислорода, не нужно упрощать. Если бы удалось установить, что в прежние эпохи в атмосфере Марса кислорода биогенного происхождения было больше, чем сейчас, то следовало бы предполагать, что жизнь на Марсе стала беднее, но при этом могли возникнуть немногочисленные высокоспециализированные формы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вы, наверно, знаете, что дыхание необходимо для того, чтобы в организм с вдыхаемым воздухом поступал кислород, необходимый для жизни, а при выдохе организм выделяет наружу углекислый газ.

Дышит все живое - и животные, и птицы, и растения.

А зачем живым организмам так необходим кислород, что без него невозможна жизнь? И откуда в клетках берется углекислый газ, от которого организму нужно постоянно освобождаться?

Дело в том, что каждая клеточка живого организма представляет собой маленькое, но очень активное биохимическое производство. А вы знаете, что никакое производство невозможно без энергии. Все процессы, которые протекают в клетках и тканях, протекают с потреблением большого количества энергии.

Откуда же она берется?

С пищей, которую мы едим, - из углеводов, жиров и белков. В клетках эти вещества окисляются . Чаще всего цепь превращений сложных веществ приводит к образованию универсального источника энергии - глюкозы. В результате окисления глюкозы высвобождается энергия. Вот для окисления как раз и нужен кислород. Энергию, которая высвобождается в результате этих реакций, клетка запасает в виде особых высокоэнергетических молекул - они, как батарейки, или аккумуляторы, отдают энергию по необходимости. А конечным продуктом окисления питательных веществ являются вода и углекислый газ, который удаляются из организма: из клеток он поступает в кровь, которая переносит углекислый газ в легкие, и там он выводится наружу в процессе выдоха. За один час через легкие человек выделяет от 5 до 18 литров углекислого газа и до 50 граммов воды.

Кстати...

Высокоэнергетические молекулы, которые являются "топливом" для биохимических процессов, называются АТФ - аденозинтрифосфорная кислота. У человека продолжительность жизни одной молекулы АТФ составляет менее 1 минуты. Человеческий организм синтезирует около 40 кг АТФ в день, но при этом вся она практически тут же тратится, и запаса АТФ в организме практически не создаётся. Для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ. Вот почему без поступления кислорода живой организм может прожить максимум несколько минут.

А бывают ли живые организмы, которые не нуждаются в кислороде?

С процессами анаэробного дыхания знаком каждый из нас! Так, брожение теста или кваса - это пример анаэробного процесса, осуществляемого дрожжами: они окисляют глюкозу до этанола (спирта); процесс скисания молока - это результат работы молочнокислых бактерий, которые осуществляют молочнокислое брожение - превращают молочный сахар лактозу в молочную кислоту.

Зачем нужно кислородное дыхание, если есть бескислородное?

Затем, что аэробное окисление в разы эффективнее, чем анаэробное. Сравните: в процессе анаэробного расщепления одной молекулы глюкозы образуется всего 2 молекулы АТФ, а в результате аэробного распада молекулы глюкозы образуется 38 молекул АТФ! Для сложных организмов с высокой скоростью и интенсивностью обменных процессов анаэробного дыхания просто не хватит для поддержания жизни - так электронная игрушка, которой для работы требуется 3-4 батарейки, просто не включится, если в нее вставить только одну батарейку.

А в клетках человеческого организма возможно бескислородное дыхание?

Конечно! Первый этап распада молекулы глюкозы, который называется гликолизом, проходит без присутствия кислорода. Гликолиз - это процесс, общий практически для всех живых организмов. В процессе гликолиза образуется пировиноградная кислота (пируват). Именно она отправляется по пути дальнейших превращений, приводящих к синтезу АТФ как при кислородном, так и бескислородном дыхании.

Так, в мышцах запасы АТФ очень малы - их хватает только на 1-2 секунды мышечной работы. Если мышце необходима кратковременная, но активная деятельность, первым в ней мобилизуется анаэробное дыхание - оно быстрее активируется и дает энергию примерно на 90 секунд активной работы мышцы. Если же мышца активно работает более двух минут, то подключается аэробное дыхание: при нем производство АТФ происходит медленно, но энергии оно дает достаточно, чтобы поддерживать физическую активность в течение длительного времени (до нескольких часов).

Все живые организмы делятся на аэробов и анаэробов, включая бактерий. Поэтому существует два типа бактерий в организме человека и вообще в природе – аэробные и анаэробные. Аэробы должны получать кислород , чтобы жить, тогда как он не нужен вообще или не обязателен . И те, и другие типы бактерий играют важную роль в экосистеме, принимая участие в разложении органических отходов. Но среди анаэробов много видов, которые способны вызывать проблемы со здоровьем у человека и животных.

Люди и животные, а также большинство грибов и т.д. – все обязательные аэробы, которым нужно дышать и вдыхать кислород, чтобы выжить.

Анаэробные бактерии в свою очередь делятся на:

  • факультативные (условные) – нуждаются в кислороде для более эффективного развития, но могут обходится без него;
  • облигатные (обязательные) – кислород для них смертелен и убивает через некоторое время (оно зависит от вида).

Анаэробные бактерии способны жить в местах, где мало кислорода, таких как человеческая ротовая полость, кишечник. Многие из них вызывают заболевания в тех областях человеческого организма, где меньше кислорода, – горле, во рту, кишечнике, среднем ухе, ранах (гангрены и абсцессы), внутри прыщей и т.д. Помимо этого есть и полезные виды, помогающие пищеварению.

Аэробные бактерии, по сравнению с анаэробными, используют O2 для клеточного дыхания. Анаэробное же дыхание означает энергетический цикл с меньшей эффективностью для производства энергии. Аэробное дыхание – это энергия, выделяемая сложным процессом, когда O2 и глюкоза метаболизируются вместе внутри митохондрий клетки.

При сильных физических нагрузках организм человека может испытывать кислородное голодание. Это вызывает переключение на анаэробный метаболизм в скелетных мышцах, в процессе которого вырабатываются кристаллы молочной кислоты в мышцах, так как углеводы расщепляются не полностью. После этого мышцы позже начинают болеть (крепатура) и лечатся путем массирования области для ускорения растворения кристаллов и естественным вымыванием их кровотоком со временем.

Анаэробные и аэробные бактерии развиваются и размножаются при ферментации – в процессе разложения органических веществ при помощи ферментов. При этом аэробные бактерии используют кислород, присутствующий в воздухе для энергетического метаболизма, по сравнению с анаэробными бактериями, которые не нуждаются в кислороде из воздуха для этого.

Это можно понять, проведя эксперимент, чтобы идентифицировать тип, выращивая аэробные и анаэробные бактерии в жидкой культуре. Аэробные бактерии соберутся сверху, чтобы вдохнуть больше кислорода и выжить, тогда как анаэробные – скорее соберутся на дне, чтобы избежать кислорода.

Почти все животные и люди являются обязательными аэробами, для которых требуется кислород для дыхания, тогда как стафилококки во рту являются примером факультативных анаэробов. Отдельные человеческие клетки также являются факультативными анаэробами: они переключаются на ферментацию молочной кислоты, если кислород недоступен.

Краткое сравнение аэробных и анаэробных бактерий

  1. Аэробные бактерии используют кислород, чтобы оставаться в живых.
    Анаэробные бактерии нуждаются в минимальном количестве кислорода или вообще умирают в его присутствии (зависит от видов) и, следовательно, избегают O2.
  2. Многие виды среди тех и других видов бактерий играют важную роль в экосистеме, принимая участия в разложении органических веществ – являются редуцентами. Но грибы в этом плане более важны.
  3. Анаэробные бактерии являются причиной различных заболеваний различных заболеваний, от боли в горле до ботулизма, столбняка и других.
  4. Но среди анаэробных бактерий также присутствуют и те, что приносят пользу, например, расщепляют вредные для человека растительные сахара в кишечнике.

Оспорена распространённая гипотеза о происхождении животных. Самым древним из них не было нужды дожидаться, пока океаны насытятся кислородом.

Общепринятое мнение гласит, что эволюции животных препятствовала нехватка кислорода в воде. Однако нынешние губки, которые очень близки к первым животным планеты, прекрасно чувствуют себя практически при полном отсутствии кислорода.

По-видимому, самые примитивные животные всё-таки обитали в воде, в которой почти не было этого драгоценного элемента. Иными словами, сначала возникла жизнь, которая создала современные насыщенные кислородом океаны, а не наоборот.

Даниэль Миллс из Университета Южной Дании и его коллеги достали из насыщенных кислородом вод датского фьорда несколько морских губок Halichondria panicea и поместили их в аквариум, откуда постепенно выкачивали кислород. Даже когда уровень кислорода снизился в 200 раз по сравнению с атмосферным, губки продержались отпущенные им учёными десять дней. Если современные губки могут жить с таким количеством кислорода, то и первые животные тоже могли, почему нет?