Умножение матриц на число онлайн с решением. Действия с матрицами. Определение и виды матриц

Лекция№1

МАТРИЦЫ

Определение и виды матриц

Определение 1.1. Матрицей размера т п называется прямоугольная таблица чисел (или других объектов), содержащая m строк и n столбцов.

Матрицы обозначаются прописными (заглавными) буквами латинского алфавита, например, А, В, С,... Числа (или другие объекты), составляющие матрицу, называются элементами матрицы. Элементами матрицы могут быть функции. Для обозначения элементов матрицы используются строчные буквы латинского алфавита с двойной индексацией: аij, где первый индекс i (читается – и) – номер строки, второй индекс j (читается – жи) номер столбца.

Определение 1.2. Матрица называется квадратной п- го порядка, если число её строк равно числу столбцов и равно одному и тому же числу п

Для квадратной матрицы вводятся понятия главной и побочной диагонали.

Определение 1.3. Главная диагональ квадратной матрицы состоит из элементов, имеющих одинаковые индексы, т. е. . Это элементы: a 11,a 22,…

Определение 1.4. диагональной , если все элементы, кроме элементов главной диагонали, равны нулю

Определение 1.5. Квадратная матрица называется треугольной , если все её элементы, расположенные ниже (или выше) главной диагонали, равны нулю.

Определение 1.6. Квадратная матрица п- го порядка, у которой все элементы главной диагонали равны единице, а остальные равны нулю, называется единичной матрицей n -го порядка, и она обозначается буквой Е.

Определение 1.7. Матрица любого размера называется нулевой, или нуль-матрицей, если все её элементы равны нулю.

Определение 1.8. Матрица, состоящая из одной строки, называется матрицей-строкой.

Определение 1.9. Матрица, состоящая из одного столбца, называется матрицей-столбцом.

А = (а 11 а 12 ... а 1n) – матрица-строка;

Определение 1.10. Две матрицы А и В одинаковых размеров называ- ются равными, если равны между собой все соответствующие элементы этих матриц, т. е. aij = bij для любых i = 1, 2, ..., т; j = 1, 2,…, n .

Операции над матрицами

Над матрицами, как и над числами, можно производить ряд операций. Основными операциями над матрицами являются сложение (вычитание) матриц, умножение матрицы на число, умножение матриц. Эти операции аналогичны операциям над числами. Специфическая операция – транспонирование матрицы.

Умножение матрицы на число

Определение 1.11. Произведением матрицы А на число λ называется матрица В = А, элементы которой получены умножением элементов мат рицы А на число λ .

Пример 1.1. Найти произведение матрицы А= на число 5.


Решение . .◄ 5A=

Правило умножения матрицы на число : чтобы умножить матрицу на число, надо умножить на это число все элементы матрицы.

Следствие.

1. Общий множитель всех элементов матрицы можно вынести за знак матрицы.

2. Произведение матрицы А на число 0 есть нулевая матрица: А · 0 = 0 .

Сложение матриц

Определение 1.12. Суммой двух матриц А и В одинакового размера т n называется матрица С = А + В , элементы которой получены путём сложения соответствующих элементов матрицы А и матрицы В , т. е. cij = aij + bij для i = 1, 2, ..., m ; j = 1, 2, ..., n (т. е. матрицы складываются поэлементно).

Следствие. Сумма матрицы А с нулевой матрицей равна исходной матрице: А + О = А.

1.2.3. Вычитание матриц

Разность двух матриц одинакового размера определяется через пре- дыдущие операции: А – В = А + (– 1)В.

Определение 1.13. Матрица –А = (– 1называется противоположной матрице А.

Следствие. Сумма противоположных матриц равна нулевой матрице: А + (–А) = О.

Умножение матриц

Определение 1.14. Умножение матрицы А на матрицу В определено, когда число столбцов первой матрицы равно числу строк второй матрицы. Тогда произведением матриц называется такая матрица , каждый элемент которой cij равен сумме произведений элементов i -й строки матрицы А на соответствующие элементы j -го столбца матрицы B.

Пример 1.4. Вычислить произведение матриц А · В, где

A=

=

Пример 1.5. Найти произведения матриц АВ и ВА, где

Замечания. Из примеров 1.4–1.5 следует, что операция умножения матриц имеет некоторые отличия от умножения чисел:

1) если произведение матриц АВ существует, то после перестановки сомножителей местами произведение матриц ВА может и не существовать. Действительно, в примере 1.4 произведение матриц AB существует, а произведение ВА не существует;

2) если даже произведения АВ и ВА существуют, то результат произведения может быть матрицами разного размера. В случае, когда оба произведения АВ и ВА существуют и оба – матрицы одинакового размера (это возможно только при умножении квадратных матриц одного порядка), то коммутативный (переместительный) закон умножения всё равно не выполняется, т.е. А В В А, как в примере 1.5 ;

3) однако если перемножить квадратную матрицу А на единичную матрицу Е того же порядка, тогда АЕ = ЕА = А.

Таким образом, единичная матрица при умножении матриц играет ту же роль, что и число 1 при умножении чисел;

4) произведение двух ненулевых матриц может равняться нулевой матрице, т. е. из того, что А В = 0, не следует, что А = 0 или B = 0.

Умножение матрицы на число - это операция над матрицей, в результате которой каждый её элемент умножается на дейсвительное или комплексное число. Выглядит математическим языком это так:

$$ B = \lambda \cdot A \Rightarrow b_{ij} = \lambda a_{ij} $$

Стоит заметить, что получаемая матрица $ B $ в результате должна получаться той же размерности, которой обладала начальная матрица $ A $. Так же можно обратить внимание на такой факт: $ \lambda \cdot A = A \cdot \lambda $, то есть можно менять местами множители и от этого произведение не изменится.

Будет полезным использовать операцию умножение матрицы на число при вынесении общего множителя за пределы матрицы. В этом случае каждый элемент матрицы делится на число $ \lambda $, а сам он выносится перед матрицей.

Свойства

  1. Дистрибутивный закон относительно матриц: $$ \lambda \cdot (A+B) = \lambda A + \lambda B $$Умножение суммы матриц на число можно заменить на сумму произведений каждой отдельной матрицы на данное число
  2. Дистрибутивный закон относительно действительных (комплексных) чисел: $$ (\lambda + \mu) \cdot A = \lambda A + \mu A $$ Умножение матрицы на сумму чисел можно заменить на сумму произведений каждого числа на матрицу
  3. Ассоциативный закон: $$ \lambda \cdot (\mu \cdot A) = (\lambda \cdot \mu) A $$ Удобно использовать если нужно вынести общий множитель из матрицы перед ней, при этом домножая уже стоящий перед ней коэффициент
  4. Есть особое число $ \lambda = 1 $, благодаря которому матрица остаётся неизменной $$ 1 \cdot A = A \cdot 1 = A $$
  5. Умножение матрицы на ноль приводит к тому, что каждый элемент матриц обнуляется и матрица становится нулевой той же размерности, которой была изначально: $$ 0 \cdot A = 0 $$

Примеры решений

Пример
Дано $ A = \begin{pmatrix} 2&-1&4\\0&9&3\\-2&-3&5 \end{pmatrix} $ и действительное число $ \lambda = 2 $. Умножить число на матрицу.
Решение

Записываем математическую операцию умножения и заодно вспоминаем правило, которое гласит: матрица умножается на число поэлементно.

$$ \lambda \cdot A = 2 \cdot \begin{pmatrix} 2&-1&4\\0&9&3\\-2&-3&5 \end{pmatrix} = \begin{pmatrix} 2\cdot 2&2\cdot (-1)&2\cdot 4\\2\cdot 0&2 \cdot 9&2\cdot 3\\2\cdot (-2)&2\cdot (-3)&2\cdot 5 \end{pmatrix} = $$

$$ = \begin{pmatrix} 4&-2&8\\0&18&6\\-4&-6&10 \end{pmatrix} $$

В результате видим, что каждое число стоящее в матрицы удвоилось по отношению к начальному значению.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lambda \cdot A = \begin{pmatrix} 4&-2&8\\0&18&6\\-4&-6&10 \end{pmatrix} $$

Для того, чтобы произвести умножение матрицы A на произвольное число α, нужно элементы матрицы A умножить на число α, т.е. произведение матрицы на число будет следующим:

Пример 1. Найти матрицу 3A для матрицы

Решение. В соответствии с определением умножим элементы матрицы A на 3 и получим

Это был совсем простой пример умножения матрицы на число с целыми числами. Впереди также простые примеры, но уже такие, где среди множителей и элементов матриц - дроби, переменные (буквенные обозначения), ведь законы умножения действуют не только для целых чисел, так что никогда не вредно их повторить.

Пример 2. A на число α, если
, .

A на α, не забывая, что при умножении дробей числитель первой дроби умножается на числитель первой дроби и произведение записывается в числитель, а знаменатель первой дроби умножается на знаменатель второй дроби и произведение записывается в знаменатель. При получении второго элемента первой строки новой матрицы полученную дробь сократили на 2, это надо делать обязательно. Получаем

Пример 3. Выполнить операцию умножения матрицы A на число α, если
, .

Решение. Умножим элементы матрицы A на α, не путаясь в буквенных обозначениях, не забыв оставить минус перед вторым элементом второй строки новой матрицы, и помня, что результат умножения числа на обратное ему число есть единица (первый элемент третьей строки). Получаем

.

Пример 4. Выполнить операцию умножения матрицы A на число α, если
, .

Решение. Вспоминаем, что при умножении числа в степени на число в степени показатели степеней складываются. Получаем

.

Этот пример, кроме всего прочего, наглядно демонстрирует, что действия умножения матрицы на число могут быть прочитаны (и записаны) в обратном порядке и называется это вынесением постоянного множителя перед матрицей.

В сочетании со сложением и вычитанием матриц операция умножения матрицы на число может образовывать различные матричные выражения, например, 5A − 3B , 4A + 2B .

Свойства умножения матрицы на число

(здесь A, B - матрицы, - числа, 1 - число единица)

1.

2.

3.

Свойства (1) и (2) связывают умножение матрицы на число со сложением матриц. Существует также очень важная связь между умножением матрицы на число и перемножением самих матриц:

т. е. если в произведении матриц один из множителей умножается на число, то и всё произведение будет умножаться на число.

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.