Гц значение. Что такое звук: его громкость, кодирование и качество. Частота дискретизации звука

периодических процессов (например, колебаний) в Международной системе единиц (СИ) а также в системах единиц СГС и МКГСС . Герц - производная единица , имеющая специальные наименование и обозначение. Через основные единицы СИ герц выражается следующим образом: 1 Гц = 1 −1 .

1 Гц означает одно исполнение (реализацию) такого процесса за одну секунду , другими словами - одно колебание в секунду, 10 Гц - десять исполнений такого процесса, или десять колебаний за одну секунду.

В соответствии с общими правилами СИ, касающимися производных единиц , названных по имени учёных, наименование единицы герц пишется со строчной буквы , а её обозначение - с заглавной .

История

Кратные Дольные
величина название обозначение величина название обозначение
10 1 Гц декагерц даГц daHz 10 −1 Гц децигерц дГц dHz
10 2 Гц гектогерц гГц hHz 10 −2 Гц сантигерц сГц cHz
10 3 Гц килогерц кГц kHz 10 −3 Гц миллигерц мГц mHz
10 6 Гц мегагерц МГц MHz 10 −6 Гц микрогерц мкГц µHz
10 9 Гц гигагерц ГГц GHz 10 −9 Гц наногерц нГц nHz
10 12 Гц терагерц ТГц THz 10 −12 Гц пикогерц пГц pHz
10 15 Гц петагерц ПГц PHz 10 −15 Гц фемтогерц фГц fHz
10 18 Гц эксагерц ЭГц EHz 10 −18 Гц аттогерц аГц aHz
10 21 Гц зеттагерц ЗГц ZHz 10 −21 Гц зептогерц зГц zHz
10 24 Гц иоттагерц ИГц YHz 10 −24 Гц иоктогерц иГц yHz
применять не рекомендуется не применяются или редко применяются на практике

Герц и беккерель

Кроме герца в СИ существует ещё одна производная единица, равная секунде в минус первой степени (1/с): таким же соотношением с секундой связан беккерель . Существование двух равных, но имеющих различные названия единиц, связано с различием сфер их применения: герц используется только для периодических процессов, а беккерель - только для случайных процессов распада радионуклидов . Хотя использовать обратные секунды в обоих случаях было бы формально правильно, рекомендуется использовать единицы с различными названиями, поскольку различие названий единиц подчёркивает различие природы соответствующих физических величин .

Примеры

  • Диапазон частот звуковых колебаний, которые способен слышать человек, лежит в пределах от 20 Гц до 20 кГц.
  • Сердце человека в спокойном состоянии бьётся с частотой приблизительно 1 Гц (Примечательно, что Herz в переводе с немецкого означает «сердце». Однако фамилия великого физика пишется Hertz).
  • Частота ноты ля первой октавы составляет 440 Гц. Является стандартной частотой камертона .
  • Частоты колебаний электромагнитного поля , воспринимаемого человеком как видимое излучение (свет), лежат в диапазоне от 3,9·10 14 до 7,9·10 14 Гц.
  • Частота электромагнитного излучения , используемого в микроволновых печах для нагрева продуктов, обычно равна 2,45 Гц.

См. также

Напишите отзыв о статье "Герц (единица измерения)"

Примечания

Отрывок, характеризующий Герц (единица измерения)

– Говорят, что бал будет очень хорош, – отвечала княгиня, вздергивая с усиками губку. – Все красивые женщины общества будут там.
– Не все, потому что вас там не будет; не все, – сказал князь Ипполит, радостно смеясь, и, схватив шаль у лакея, даже толкнул его и стал надевать ее на княгиню.
От неловкости или умышленно (никто бы не мог разобрать этого) он долго не опускал рук, когда шаль уже была надета, и как будто обнимал молодую женщину.
Она грациозно, но всё улыбаясь, отстранилась, повернулась и взглянула на мужа. У князя Андрея глаза были закрыты: так он казался усталым и сонным.
– Вы готовы? – спросил он жену, обходя ее взглядом.
Князь Ипполит торопливо надел свой редингот, который у него, по новому, был длиннее пяток, и, путаясь в нем, побежал на крыльцо за княгиней, которую лакей подсаживал в карету.
– Рrincesse, au revoir, [Княгиня, до свиданья,] – кричал он, путаясь языком так же, как и ногами.
Княгиня, подбирая платье, садилась в темноте кареты; муж ее оправлял саблю; князь Ипполит, под предлогом прислуживания, мешал всем.
– Па звольте, сударь, – сухо неприятно обратился князь Андрей по русски к князю Ипполиту, мешавшему ему пройти.
– Я тебя жду, Пьер, – ласково и нежно проговорил тот же голос князя Андрея.
Форейтор тронулся, и карета загремела колесами. Князь Ипполит смеялся отрывисто, стоя на крыльце и дожидаясь виконта, которого он обещал довезти до дому.

– Eh bien, mon cher, votre petite princesse est tres bien, tres bien, – сказал виконт, усевшись в карету с Ипполитом. – Mais tres bien. – Он поцеловал кончики своих пальцев. – Et tout a fait francaise. [Ну, мой дорогой, ваша маленькая княгиня очень мила! Очень мила и совершенная француженка.]
Ипполит, фыркнув, засмеялся.
– Et savez vous que vous etes terrible avec votre petit air innocent, – продолжал виконт. – Je plains le pauvre Mariei, ce petit officier, qui se donne des airs de prince regnant.. [А знаете ли, вы ужасный человек, несмотря на ваш невинный вид. Мне жаль бедного мужа, этого офицерика, который корчит из себя владетельную особу.]
Ипполит фыркнул еще и сквозь смех проговорил:
– Et vous disiez, que les dames russes ne valaient pas les dames francaises. Il faut savoir s"y prendre. [А вы говорили, что русские дамы хуже французских. Надо уметь взяться.]
Пьер, приехав вперед, как домашний человек, прошел в кабинет князя Андрея и тотчас же, по привычке, лег на диван, взял первую попавшуюся с полки книгу (это были Записки Цезаря) и принялся, облокотившись, читать ее из середины.
– Что ты сделал с m lle Шерер? Она теперь совсем заболеет, – сказал, входя в кабинет, князь Андрей и потирая маленькие, белые ручки.
Пьер поворотился всем телом, так что диван заскрипел, обернул оживленное лицо к князю Андрею, улыбнулся и махнул рукой.
– Нет, этот аббат очень интересен, но только не так понимает дело… По моему, вечный мир возможен, но я не умею, как это сказать… Но только не политическим равновесием…
Князь Андрей не интересовался, видимо, этими отвлеченными разговорами.
– Нельзя, mon cher, [мой милый,] везде всё говорить, что только думаешь. Ну, что ж, ты решился, наконец, на что нибудь? Кавалергард ты будешь или дипломат? – спросил князь Андрей после минутного молчания.
Пьер сел на диван, поджав под себя ноги.
– Можете себе представить, я всё еще не знаю. Ни то, ни другое мне не нравится.
– Но ведь надо на что нибудь решиться? Отец твой ждет.
Пьер с десятилетнего возраста был послан с гувернером аббатом за границу, где он пробыл до двадцатилетнего возраста. Когда он вернулся в Москву, отец отпустил аббата и сказал молодому человеку: «Теперь ты поезжай в Петербург, осмотрись и выбирай. Я на всё согласен. Вот тебе письмо к князю Василью, и вот тебе деньги. Пиши обо всем, я тебе во всем помога». Пьер уже три месяца выбирал карьеру и ничего не делал. Про этот выбор и говорил ему князь Андрей. Пьер потер себе лоб.
– Но он масон должен быть, – сказал он, разумея аббата, которого он видел на вечере.
– Всё это бредни, – остановил его опять князь Андрей, – поговорим лучше о деле. Был ты в конной гвардии?…

В статье вы узнаете, что такое звук, каков его смертельный уровень громкости, а также скорость в воздухе и других средах. Также поговорим про частоту, кодирование и качество звука.

Еще рассмотрим дискретизацию, форматы и мощность звука. Но сначала дадим определение музыки, как упорядоченному звуку — противоположность неупорядоченному хаотическому, который мы воспринимаем, как шум.

— это звуковые волны, которые образуются в результате колебаний и изменения атмосферы, а также объектов вокруг нас.

Даже при разговоре вы слышите своего собеседника потому, что он воздействует на воздух. Также, когда вы играете на музыкальном инструменте, бьете ли вы по барабану или дергаете струну, вы производите этим колебания определенной частоты, которой в окружающем воздухе производит звуковые волны.

Звуковые волны бывают упорядоченные и хаотические . Когда они упорядоченные и периодические (повторяются через какой-то промежуток времени), мы слышим определенную частоту или высоту звука.

То есть мы можем определить частоту, как количество повторения события в заданный промежуток времени. Таким образом, когда звуковые волны хаотичны, мы воспринимаем их как шум .

Но когда волны упорядочены и периодически повторяются, то мы можем измерить их количеством повторяющихся циклов в секунду.

Частота дискретизации звука

Частота дискретизации звука — это количество измерений уровня сигнала за 1 секунду. Герц (Гц) или Hertz (Hz) — это научная единица измерения, определяющая количество повторений какого-то события в секунду. Эту единицу мы будем использовать!

Частота дискретизации звука

Наверное, вы очень часто видели такую аббревиатуру — Гц или Hz. Например, в плагинах эквалайзеров. В них единицами измерения являются герцы и килогерцы (то есть 1000 Гц).

Обычно человек слышит звуковые волны от 20 Гц до 20 000 Гц (или 20 кГц). Все, что меньше 20 Гц — это инфразвук . Все, что больше 20 кГц — это ультразвук .

Давайте я открою плагин эквалайзера и покажу вам как это выглядит. Вам, наверное, знакомы эти цифры.


Частоты звука

С помощью эквалайзера вы можете ослаблять или усиливать определенные частоты в пределах слышимого человеком диапазона.

Небольшой пример!

Здесь у меня запись звуковой волны, которая была сгенерирована на частоте 1000 Гц (или 1 кГц). Если увеличить масштаб и посмотреть на ее форму, то мы увидим, что она правильная и повторяющиеся (периодическая).

Повторяющиеся (периодическая) звуковая волна

В одной секунде здесь происходит тысяча повторяющихся циклов. Для сравнения, давайте посмотрим на звуковую волну, которую мы воспринимаем как шум.


Неупорядоченный звук

Тут нет какой-то конкретной повторяющейся частоты. Также нет определенного тона или высоты. Звуковая волна не упорядочена. Если мы взглянем на форму этой волны, то увидим, что в ней нет ничего повторяющегося или периодического.

Давайте перейдем в более насыщенную часть волны. Мы увеличиваем масштаб и видим, что она не постоянная.


Неупорядоченная волна при масштабировании

Из-за отсутствия цикличности мы не в состоянии услышать какую-то определенную частоту в этой волне. Поэтому мы воспринимаем ее как шум.

Смертельный уровень звука

Хочу немного упомянуть про смертельный уровень звука для человека. Он берет свое начало от 180 дБ и выше.

Стоит сразу сказать, что по нормативным нормам, безопасным уровнем громкости шума считается не более 55 дБ (децибел) днем и 40 дБ ночью. Даже при длительном воздействии на слух, этот уровень не нанесет вреда.

Уровни громкости звука
(дБ) Определение Источник
0 Совсем не лышно
5 Почти не слышно
10 Почти не слышно Тихий шелест листьев
15 Еле слышно Шелест листвы
20 — 25 Едва слышно Шепот человека на расстоянии 1 метр
30 Тихо Тиканье настенных часов (допустимый максимум по нормам для жилых помещений ночью с 23 до 7 часов )
35 Довольно слышно Приглушенный разговор
40 Довольно слышно Обычная речь (норма для жилых помещений днем с 7 до 23 часов )
45 Довольно слышно Разговор
50 Отчетливо слышно Пишущая машинка
55 Отчетливо слышно Разговор (европейская норма для офисных помещений класса А )
60 (норма для контор )
65 Громкий разговор (1м)
70 Громкие разговоры (1м)
75 Крик и смех (1м)
80 Очень шумно Крик, мотоцикл с глушителем
85 Очень шумно Громкий крик, мотоцикл с глушителем
90 Очень шумно Громкие крики, грузовой железнодорожный вагон (7м)
95 Очень шумно Вагон метро (в 7 метрах снаружи или внутри вагона)
100 Крайне шумно Оркестр, гром (по европейским нормам, это максимально допустимое звуковое давление для наушников )
105 Крайне шумно В старых самолетах
110 Крайне шумно Вертолет
115 Крайне шумно Пескоструйный аппарат (1м)
120-125 Почти невыносимо Отбойный молоток
130 Болевой порог Самолет на старте
135 — 140 Контузия Взлетающий реактивный самолет
145 Контузия Старт ракеты
150 — 155 Контузия, травмы
160 Шок, травма Ударная волна от сверхзвукового самолета
165+ Разрыв барабанных перепонок и легких
180+ Смерть

Скорость звука в км в час и метры в секунду

Скорость звука — это скорость распространения волн в среде. Ниже даю таблицу скоростей распространения в различных средах.

Скорость звука в воздухе намного меньше чем в твердых средах. А скорость звука в воде намного выше, чем в воздухе. Составляет она 1430 м/с. В итоге, распространение идет быстрее и слышимость намного дальше.

Мощность звука — это энергия, которая передается звуковой волной через рассматриваемую поверхность за единицу времени. Измеряется в (Вт). Бывает мгновенное значение и среднее (за период времени).

Давайте продолжим работать с определениями из раздела теория музыки!

Высота и нота

Высота — это музыкальный термин, который обозначает почти тоже самое, что и частота. Исключение составляет то, что она не имеет единицы измерения. Вместо того чтобы определять звук количеством циклов в секунду в диапазоне 20 — 20 000 Гц, мы обозначаем определенные значения частот латинскими буквами.

Музыкальные инструменты производят периодические звуковые волны правильной формы, которые мы называем тонами или нотами.

То есть другими словами, — это своего рода моментальный снимок периодической звуковой волны определенной частоты. Высота этой ноты говорит нам о том, насколько нота высока или низка по своему звучанию. При этом более низкие ноты имеют более длинные волны. А высокие, более короткие.

Давайте посмотрим на звуковую волну в 1 кГц. Сейчас я увеличу масштаб, и вы увидите каково расстояние между циклами.

Звуковая волна в 1 кГц

Теперь давайте взглянем на волну в 500 Гц. Тут частота в 2 раза меньше и расстояние между циклами больше.

Звуковая волна в 500 Гц

Теперь возьмем волну в 80 Гц. Тут будет еще шире и высота намного ниже.

Звук в 80 Гц

Мы видим взаимосвязь между высотой звука и формой его волны.

Каждая музыкальная нота основана на одной основополагающей частоте (основном тоне). Но помимо тона в музыке состоит и из дополнительных резонансных частот или обертонов.

Давайте я покажу вам еще один пример!

Ниже волна в 440 Гц. Это стандарт в мире музыке для настройки инструментов. Соответствует он ноте ля.

Чистая звуковая волна в 440 Гц

Мы слышим только основной тон (чистую звуковую волну). Если увеличить масштаб, то увидим, что она периодическая.

А теперь давайте посмотрим на волну той же частоты, но сыгранную на пианино.

Периодический звук пианино

Посмотрите, она тоже периодическая. Но в ней есть небольшие дополнения и нюансы. Все они в совокупности и дают нам понятие о том, как звучит пианино. Но помимо этого, обертона обуславливают и тот факт, что одни ноты будут иметь большее сродство к данной ноте чем другие.

Для примера можно сыграть туже ноту, но на октаву выше. По звучанию будет совсем иначе. Однако она будет родственной предыдущей ноте. То есть это та же нота, только сыгранная на октаву выше.

Такая родственная связь двух нот в разных октавах обусловлена наличием обертонов. Они постоянно присутствуют и определяют насколько близко или отдаленно определенные ноты связаны друг с другом.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 мегагерц [МГц] = 1000000 герц [Гц]

Исходная величина

Преобразованная величина

герц эксагерц петагерц терагерц гигагерц мегагерц килогерц гектогерц декагерц децигерц сантигерц миллигерц микрогерц наногерц пикогерц фемтогерц аттогерц циклов в секунду длина волны в эксаметрах длина волны в петаметрах длина волны в тераметрах длина волны в гигаметрах длина волны в мегаметрах длина волны в километрах длина волны в гектометрах длина волны в декаметрах длина волны в метрах длина волны в дециметрах длина волны в сантиметрах длина волны в миллиметрах длина волны в микрометрах Комптоновская длина волны электрона Комптоновская длина волны протона Комптоновская длина волны нейтрона оборотов в секунду оборотов в минуту оборотов в час оборотов в сутки

Подробнее о частоте и длине волны

Общие сведения

Частота

Частота - это величина, измеряющая как часто повторяется тот или иной периодический процесс. В физике с помощью частоты описывают свойства волновых процессов. Частота волны - количество полных циклов волнового процесса за единицу времени. Единица частоты в системе СИ - герц (Гц). Один герц равен одному колебанию в секунду.

Длина волны

Существует множество различных типов волн в природе, от вызванных ветром морских волн до электромагнитных волн. Свойства электромагнитных волн зависят от длины волны. Такие волны разделяют на несколько видов:

  • Гамма-лучи с длиной волны до 0,01 нанометра (нм).
  • Рентгеновские лучи с длиной волны - от 0,01 нм до 10 нм.
  • Волны ультрафиолетового диапазона , которые имеют длину от 10 до 380 нм. Человеческому глазу они не видимы.
  • Свет в видимой части спектра с длиной волны 380–700 нм.
  • Невидимое для людей инфракрасное излучение с длиной волны от 700 нм до 1 миллиметра.
  • За инфракрасными волнами следуют микроволновые , с длиной волны от 1 миллиметра до 1 метра.
  • Самые длинные - радиоволны . Их длина начинается с 1 метра.

Эта статья посвящена электромагнитному излучению, и особенно свету. В ней мы обсудим, как длина и частота волны влияют на свет, включая видимый спектр, ультрафиолетовое и инфракрасное излучение.

Электромагнитное излучение

Электромагнитное излучение - это энергия, свойства которой одновременно сходны со свойствами волн и частиц. Эта особенность называется корпускулярно-волновым дуализмом. Электромагнитные волны состоят из магнитной волны и перпендикулярной к ней электрической волны.

Энергия электромагнитного излучения - результат движения частиц, которые называются фотонами. Чем выше частота излучения, тем они более активны, и тем больше вреда они могут принести клеткам и тканям живых организмов. Это происходит потому, что чем выше частота излучения, тем больше они несут энергии. Большая энергия позволяет им изменить молекулярную структуру веществ, на которые они действуют. Именно поэтому ультрафиолетовое, рентгеновское и гамма излучение так вредно для животных и растений. Огромная часть этого излучения - в космосе. Оно присутствует и на Земле, несмотря на то, что озоновый слой атмосферы вокруг Земли блокирует большую его часть.

Электромагнитное излучение и атмосфера

Атмосфера земли пропускает только электромагнитное излучение с определенной частотой. Большая часть гамма-излучения, рентгеновских лучей, ультрафиолетового света, часть излучения в инфракрасном диапазоне и длинные радиоволны блокируются атмосферой Земли. Атмосфера поглощает их и не пропускает дальше. Часть электромагнитных волн, в частности, излучение в коротковолновом диапазоне, отражается от ионосферы. Все остальное излучение попадает на поверхность Земли. В верхних атмосферных слоях, то есть, дальше от поверхности Земли, больше радиации, чем в нижних слоях. Поэтому чем выше, тем опаснее для живых организмов находиться там без защитных костюмов.

Атмосфера пропускает на Землю небольшое количество ультрафиолетового света, и он приносит вред коже. Именно из-за ультрафиолетовых лучей люди обгорают на солнце и могут даже заболеть раком кожи. С другой стороны, некоторые лучи, пропускаемые атмосферой, приносят пользу. Например, инфракрасные лучи, которые попадают на поверхность Земли, используют в астрономии - инфракрасные телескопы следят за инфракрасными лучами, излучаемыми астрономическими объектами. Чем выше от поверхности Земли, тем больше инфракрасного излучения, поэтому телескопы часто устанавливают на вершинах гор и на других возвышенностях. Иногда их отправляют в космос, чтобы улучшить видимость инфракрасных лучей.

Взаимоотношение между частотой и длиной волны

Частота и длина волны обратно пропорциональны друг другу. Это значит, что по мере увеличения длины волны частота уменьшается и наоборот. Это легко представить: если частота колебаний волнового процесса высокая, то время между колебаниями намного короче, чем у волн, частота колебаний которых меньше. Если представить волну на графике, то расстояние между ее пиками будет тем меньше, чем больше колебаний она совершает на определенном отрезке времени.

Чтобы определить скорость распространения волны в среде, необходимо умножить частоту волны на ее длину. Электромагнитные волны в вакууме всегда распространяются с одинаковой скоростью. Эта скорость известна как скорость света. Она равна 299 792 458 метрам в секунду.

Свет

Видимый свет - электромагнитные волны с частотой и длиной, которые определяют его цвет.

Длина волны и цвет

Самая короткая длина волны видимого света - 380 нанометров. Это фиолетовый цвет, за ним следуют синий и голубой, затем зеленый, желтый, оранжевый и, наконец, красный. Белый свет состоит из всех цветов сразу, то есть, белые предметы отражают все цвета. Это можно увидеть с помощью призмы. Попадающий в нее свет преломляется и выстраивается в полосу цветов в той же последовательность, что в радуге. Эта последовательность - от цветов с самой короткой длиной волны, до самой длинной. Зависимость скорости распространения света в веществе от длины волны называется дисперсией.

Радуга образуется похожим способом. Капли воды, рассеянные в атмосфере после дождя, ведут себя так же как призма и преломляют каждую волну. Цвета радуги настолько важны, что во многих языках существуют мнемоника, то есть прием запоминания цветов радуги, настолько простой, что запомнить их могут даже дети. Многие дети, говорящие по-русски, знают, что «Каждый охотник желает знать, где сидит фазан». Некоторые люди придумывают свою мнемонику, и это - особенно полезное упражнение для детей, так как, придумав свой собственный метод запоминания цветов радуги, они быстрее их запомнят.

Свет, к которому человеческий глаз наиболее чувствителен - зеленый, с длиной волны в 555 нм в светлой среде и 505 нм в сумерках и темноте. Различать цвета могут далеко не все животные. У кошек, например, цветное зрение не развито. С другой стороны, некоторые животные видят цвета намного лучше, чем люди. Например, некоторые виды видят ультрафиолетовый и инфракрасный свет.

Отражение света

Цвет предмета определяется длиной волны света, отраженного с его поверхности. Белые предметы отражают все волны видимого спектра, в то время как черные - наоборот, поглощают все волны и ничего не отражают.

Один из естественных материалов с высоким коэффициентом дисперсии - алмаз. Правильно обработанные бриллианты отражают свет как от наружных, так и от внутренних граней, преломляя его, как и призма. При этом важно, чтобы большая часть этого света была отражена вверх, в сторону глаза, а не, например, вниз, внутрь оправы, где его не видно. Благодаря высокой дисперсии бриллианты очень красиво сияют на солнце и при искусственном освещении. Стекло, ограненное так же, как бриллиант, тоже сияет, но не настолько сильно. Это связано с тем, что, благодаря химическому составу, алмазы отражают свет намного лучше, чем стекло. Углы, используемые при огранке бриллиантов, имеет огромное значение, потому что слишком острые или слишком тупые углы либо не позволяют свету отражаться от внутренних стен, либо отражают свет в оправу, как показано на иллюстрации.

Спектроскопия

Для определения химического состава вещества иногда используют спектральный анализ или спектроскопию. Этот способ особенно хорош, если химический анализ вещества невозможно провести, работая с ним непосредственно, например, при определении химического состава звезд. Зная, какое электромагнитное излучение поглощает тело, можно определить, из чего оно состоит. Абсорбционная спектроскопия, являющаяся одним из разделов спектроскопии, определяет какое излучение поглощается телом. Такой анализ можно делать на расстоянии, поэтому его часто используют в астрономии, а также в работе с ядовитыми и опасными веществами.

Определение наличия электромагнитного излучения

Видимый свет, так же как и всё электромагнитное излучение - это энергия. Чем больше энергии излучается, тем легче эту радиацию измерить. Количество излученной энергии уменьшается по мере увеличения длины волны. Зрение возможно именно благодаря тому, что люди и животные распознают эту энергию и чувствуют разницу между излучением с разной длиной волны. Электромагнитное излучение разной длины ощущается глазом как разные цвета. По такому принципу работают не только глаза животных и людей, но и технологии, созданные людьми для обработки электромагнитного излучения.

Видимый свет

Люди и животные видят большой спектр электромагнитного излучения. Большинство людей и животных, например, реагируют на видимый свет , а некоторые животные - еще и на ультрафиолетовые и инфракрасные лучи. Способность различать цвета - не у всех животных - некоторые, видят только разницу между светлыми и темными поверхностями. Наш мозг определяет цвет так: фотоны электромагнитного излучения попадают в глаз на сетчатку и, проходя через нее, возбуждают колбочки, фоторецепторы глаза. В результате по нервной системе передается сигнал в мозг. Кроме колбочек, в глазах есть и другие фоторецепторы, палочки, но они не способны различать цвета. Их назначение - определять яркость и силу света.

В глазу обычно находится несколько видов колбочек. У людей - три типа, каждый из которых поглощает фотоны света в пределах определенных длин волны. При их поглощении происходит химическая реакция, в результате которой в мозг поступают нервные импульсы с информацией о длине волны. Эти сигналы обрабатывает зрительная зона коры головного мозга. Это - участок мозга, ответственный за восприятие звука. Каждый тип колбочек отвечает только за волны с определенной длиной, поэтому для получения полного представления о цвете, информацию, полученную от всех колбочек, складывают вместе.

У некоторых животных еще больше видов колбочек, чем у людей. Так, например, у некоторых видов рыб и птиц их от четырех до пяти типов. Интересно, что у самок некоторых животных больше типов колбочек, чем у самцов. У некоторых птиц, например у чаек, которые ловят добычу в воде или на ее поверхности, внутри колбочек есть желтые или красные капли масла, которые выступают в роли фильтра. Это помогает им видеть большее количество цветов. Подобным образом устроены глаза и у рептилий.

Инфракрасный свет

У змей, в отличие от людей, не только зрительные рецепторы, но и чувствительные органы, которые реагируют на инфракрасное излучение . Они поглощают энергию инфракрасный лучей, то есть реагируют на тепло. Некоторые устройства, например приборы ночного видения, также реагируют на тепло, выделяемое инфракрасным излучателем. Такие устройства используют военные, а также для обеспечения безопасности и охраны помещений и территории. Животные, которые видят инфракрасный свет, и устройства, которые могут его распознавать, видят не только предметы, которые находятся в их поле зрения на данный момент, но и следы предметов, животных, или людей, которые находились там до этого, если не прошло слишком много времени. Например, змеям видно, если грызуны копали в земле ямку, а полицейские, которые пользуются прибором ночного видения, видят, если в земле были недавно спрятаны следы преступления, например, деньги, наркотики, или что-то другое. Устройства для регистрации инфракрасного излучения используют в телескопах, а также для проверки контейнеров и камер на герметичность. С их помощью хорошо видно место утечки тепла. В медицине изображения в инфракрасном свете используют для диагностики. В истории искусства - чтобы определить, что изображено под верхним слоем краски. Устройства ночного видения используют для охраны помещений.

Ультрафиолетовый свет

Некоторые рыбы видят ультрафиолетовый свет . Их глаза содержат пигмент, чувствительный к ультрафиолетовым лучам. Кожа рыб содержит участки, отражающие ультрафиолетовый свет, невидимый для человека и других животных - что часто используется в животном мире для маркировки пола животных, а также в социальных целях. Некоторые птицы тоже видят ультрафиолетовый свет. Это умение особенно важно во время брачного периода, когда птицы ищут потенциальных партнеров. Поверхности некоторых растений также хорошо отражают ультрафиолетовый свет, и способность его видеть помогает в поиске пищи. Кроме рыб и птиц, ультрафиолетовый свет видят некоторые рептилии, например черепахи, ящерицы и зеленые игуаны (на иллюстрации).

Человеческий глаз, как и глаза животных, поглощает ультрафиолетовый свет, но не может его обработать. У людей он разрушает клетки глаза, особенно в роговице и хрусталике. Это, в свою очередь, вызывает различные заболевания и даже слепоту. Несмотря на то, что ультрафиолетовый свет вредит зрению, небольшое его количество необходимо людям и животным, чтобы вырабатывать витамин D. Ультрафиолетовое излучение, как и инфракрасное, используют во многих отраслях, например в медицине для дезинфекции, в астрономии для наблюдения за звездами и другими объектами и в химии для отверждения жидких веществ, а также для визуализации, то есть для создания диаграмм распространения веществ в определенном пространстве. С помощью ультрафиолетового света определяют поддельные банкноты и пропуска, если на них должны быть напечатаны знаки специальными чернилами, распознаваемыми с помощью ультрафиолетового света. В случае с подделкой документов ультрафиолетовая лампа не всегда помогает, так как преступники иногда используют настоящий документ и заменяют на нем фотографию или другую информацию, так что маркировка для ультрафиолетовых ламп остается. Существует также множество других применений для ультрафиолетового излучения.

Цветовая слепота

Из-за дефектов зрения некоторые люди не в состоянии различать цвета. Эта проблема называется цветовой слепотой или дальтонизмом, по имени человека, который первый описал эту особенность зрения. Иногда люди не видят только цвета с определенной длиной волны, а иногда они не различают цвета вообще. Часто причина - недостаточно развитые или поврежденные фоторецепторы, но в некоторых случаях проблема заключается в повреждениях на проводящем пути нервной системы, например в зрительной коре головного мозга, где обрабатывается информация о цвете. Во многих случаях это состояние создает людям и животным неудобства и проблемы, но иногда неумение различать цвета, наоборот - преимущество. Это подтверждается тем, что, несмотря на долгие годы эволюции, у многих животных цветное зрение не развито. Люди и животные, которые не различают цвета, могут, например, хорошо видеть камуфляж других животных.

Несмотря на преимущества цветовой слепоты, в обществе ее считают проблемой, и для людей с дальтонизмом закрыта дорога в некоторые профессии. Обычно они не могут получить полные права по управлению самолетом без ограничений. Во многих странах водительские права для этих людей тоже имеют ограничения, а в некоторых случаях они не могут получить права вообще. Поэтому они не всегда могут найти работу, на которой необходимо управлять автомобилем, самолетом, и другими транспортными средствами. Также им сложно найти работу, где умение определять и использовать цвета имеет большое значение. Например, им трудно стать дизайнерами, или работать в среде, где цвет используют, как сигнал (например, об опасности).

Проводятся работы по созданию более благоприятных условий для людей с цветовой слепотой. Например, существуют таблицы, в которых цвета соответствует знакам, и в некоторых странах эти знаки используют в учреждениях и общественных местах наряду с цветом. Некоторые дизайнеры не используют или ограничивают использование цвета для передачи важной информации в своих работах. Вместо цвета, или наряду с ним, они используют яркость, текст, и другие способы выделения информации, чтобы даже люди, не различающие цвета, могли полостью получить информацию, передаваемую дизайнером. В большинстве случаев люди с цветовой слепотой не различают красный и зеленый, поэтому дизайнеры иногда заменяют комбинацию «красный = опасность, зеленый = все нормально» на красный и синий цвета. Большинство операционных систем также позволяют настроить цвета так, чтобы людям с цветовой слепотой было все видно.

Цвет в машинном зрении

Машинное зрение в цвете - быстроразвивающаяся отрасль искусственного интеллекта. До недавнего времени большая часть работы в этой области проходила с монохромными изображениями, но сейчас все больше научных лабораторий работают с цветом. Некоторые алгоритмы для работы с монохромными изображениями применяют также и для обработки цветных изображений.

Применение

Машинное зрение используется в ряде отраслей, например для управления роботами, самоуправляемыми автомобилями, и беспилотными летательными аппаратами. Оно полезно в сфере обеспечения безопасности, например для опознания людей и предметов по фотографиям, для поиска по базам данных, для отслеживания движения предметов, в зависимости от их цвета и так далее. Определение местоположения движущихся объектов позволяет компьютеру определить направление взгляда человека или следить за движением машин, людей, рук, и других предметов.

Чтобы правильно опознать незнакомые предметы, важно знать об их форме и других свойствах, но информация о цвете не настолько важна. При работе со знакомыми предметами, цвет, наоборот, помогает быстрее их распознать. Работа с цветом также удобна потому, что информация о цвете может быть получена даже с изображений с низким разрешением. Для распознавания формы предмета, в отличие от цвета, требуется высокое разрешение. Работа с цветом вместо формы предмета позволяет уменьшить время обработки изображения, и использует меньше компьютерных ресурсов. Цвет помогает распознавать предметы одинаковой формы, а также может быть использован как сигнал или знак (например, красный цвет - сигнал опасности). При этом не нужно распознавать форму этого знака, или текст, на нем написанный. На веб-сайте YouTube можно увидеть множество интересных примеров использования цветного машинного зрения.

Обработка информации о цвете

Фотографии, которые обрабатывает компьютер, либо загружены пользователями, либо сняты встроенной камерой. Процесс цифровой фото- и видеосъемки освоен хорошо, но вот обработка этих изображений, особенно в цвете, связана с множеством трудностей, многие из которых еще не решены. Это связано с тем, что цветное зрение у людей и животных устроено очень сложно, и создать компьютерное зрение наподобие человеческого - непросто. Зрение, как и слух, основано на адаптации к окружающей среде. Восприятие звука зависит не только от частоты, звукового давления и продолжительности звука, но и от наличия или отсутствия в окружающей среде других звуков. Так и со зрением - восприятие цвета зависит не только от частоты и длины волны, но и от особенностей окружающей среды. Так, например, цвета окружающих предметов влияют на наше восприятие цвета.

С точки зрения эволюции такая адаптация необходима, чтобы помочь нам привыкнуть к окружающей среде и перестать обращать внимание на незначительные элементы, а направить все наше внимание на то, что меняется в окружающей обстановке. Это необходимо для того, чтобы легче замечать хищников и находить пищу. Иногда из-за этой адаптации происходят оптические иллюзии. Например, в зависимости от цвета окружающих предметов, мы воспринимаем цвет двух тел по-разному, даже когда они отражают свет с одинаковой длиной волны. На иллюстрации - пример такой оптической иллюзии. Коричневый квадрат в верхней части изображения (второй ряд, вторая колонка) выглядит светлее, чем коричневый квадрат в нижней части рисунка (пятый ряд, вторая колонка). На самом деле, их цвета одинаковы. Даже зная об этом, мы все равно воспринимаем их, как разные цвета. Поскольку наше восприятие цвета устроено так сложно, программистам трудно описать все эти нюансы в алгоритмах для машинного зрения. Несмотря на эти трудности, мы уже достигли многого в этой области.

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

М ир един и целостен, и каждая его часть является фрагментарным отображением всего общего в малом.

Частота 432 Гц является альтернативной настройкой, которая находится в соответствии с гармониками Мироздания.

Музыка на основе 432 Гц обладает благотворной целительной энергией, потому что это чистый тон математической основы природы.

Архаичные египетские инструменты, которые были обнаружены до сих пор, в основном, были настроены на 432 Гц.

В Древней Греции музыкальные инструменты были преимущественно настроены на 432 Гц. В архаических греческих мистериях Орфей являлся богом музыки, смерти и возрождения, а также хранителем Амброзии и музыки трансформации (его инструменты были настроены на 432 Hz). И это не случайно, древние знали о единстве Мироздания больше, нежели современники.

Текущая настройка музыки на основе 440 Гц не гармонирует ни на одном уровне и не соответствует космическому движению, ритму или естественной вибрации.

Когда же произошло замещение частоты 432 Гц на 440 Гц?

Впервые попытка массово изменить волны произошла в 1884, но усилиями Дж.Верди сохранили прежний строй, после чего и стали настройку “Ля”=432 Гц именовать «Вердиевским строем».

Позднее Дж. К.Диген, служащий в ВМС США, ученик физика Германа Хелмхольца, в 1910 году убедил Американскую Федерацию Музыкантов в её ежегодном собрании принять A=440 Гц, как стандартный универсальный строй для оркестров и музыкальных групп. Он был профессионалом в области астрономии, геологии, химии, изучал многие разделы физики, особенно теории света и звука. Его мнение являлось основополагающим при изучении музыкальной акустики. Дж.К.Диген спроектировал военный перезвон на 440 Гц, который использовался для пропагандистских новостей во время Второй мировой войны.

Так же, незадолго до Второй мировой войны, в 1936 году, министр нацистского движения и тайный лидер в управлении массами П. Й. Геббельс пересмотрел стандарт на 440 Гц - частоту, которая сильнее всего воздействует на мозг человека и может быть использована для управления большим количеством людей и пропаганды нацизма. Это объяснялось тем, что, если лишить человеческий организм естественной настройки, и поднять натуральный тон немного выше, то мозг будет регулярно получать раздражение. Кроме того, люди перестанут развиваться, появится множество психических отклонений, человек начнет закрываться в себе, и им станет гораздо легче руководить. Это явилось основной причиной, по которой нацисты приняли новую частоту ноты «Ля».

Около 1940г. власти США ввели настрой в 440 Гц во всём мире, и, наконец, в 1953 году он стал ISO 16-стандартом. Замена частоты 432 Гц на 440 Гц объясняется : войной Фонда Рокфеллера по контролю сознания путем замены и наложения частоты 440 Гц вместо стандартной настройки.

440 Гц являются неестественным стандартом настройки, и музыка в частоте 440 Гц конфликтует с . Музыкальная индустрия использует введение этой частоты для влияния на население, чтобы добиться большей агрессии, психо-социальной ажитации и эмоционального дистресса, приводящего людей к физическим болезням. Такая музыка также может генерировать нездоровые эффекты или антиобщественное поведение, разлад в сознании человека.

Наука киматика (изучающая визуализацию звука и вибрации) доказывает, что частота и вибрация являются мастер-ключами и организационной основой для создания всей материи и жизни на этой планете. Когда звуковые волны движутся на физическом носителе (песок, воздух, вода и т.д.), частота волн имеет непосредственное отношение к формированию структур, которые создаются звуковыми волнами, когда они проходят через определённую среду, такую как, например, человеческое тело, которое состоит на более чем 70% из воды!

Сравнение частот можно видеть на картинке.

Спецоперация по смене классической частоты музыки 432 на 440

Что мы знаем о ноте “Ля” 432 Гц? Думаю, не так много, ведь с тех пор, как “Международная Организация по Стандартизации (ISO)” приняла строй “Ля” 440 Гцгерц, как основной - концертный, прошло уже 58 лет.

Строй в 432 Гц уже никто не играет.

Музыканты, исполняющие произведения эпохи барокко, предпочитают “Ля” - 415 Гц, которая чаще всего использовалась до эпохи классицизма. Современные музыканты чаще используют 440-442 Гц, а иногда и выше, как наиболее привычный и удобный строй. Но долгий период в музыкальной истории использовалась именно нота “Ля” частотой - 432 Гц.

Даже после принятия стандарта, в 1953 году, 23 тысячи музыкантов из Франции провели референдум в поддержку «Вердиевского» строя 432 Герца, но были вежливо проигнорированы. Откуда появилась “Ля” 440 Гц, и почему именно она заменила столь долго просуществовавшую аналогичную ноту 432 Гц?

Строй 432 существовал еще в Древней Греции, начиная от Платона, Гиппократа, Аристотеля, Пифагора и др. великих мыслителей и философов античности, которые, как известно, обладали бесценными знаниями о целебном воздействии музыки на человека и вылечивали многих людей именно силой музыки!

С какой ноты начинается классический звукоряд? С ноты “До”, не так ли!? Так вот, нота “До” в данном строю будет равна 512 Гц, на октаву ниже 256 Гц, ещё ниже - 128-64-32-16-8-4-2-1. Т.е. самая низкая нота будет равна одной вибрации в секунду, соответственно, это и есть первая нота звукоряда!

Величайший скрипичный мастер всех времен - Антонио Страдивари (секрет мастерства создания инструментов которого не раскрыт до сих пор), создавал свои шедевры именно в настройке 432 Гц! Звучание 432 гораздо спокойнее, теплее и ближе. Его чувствуешь всем сердцем.

Запрещенная частота 432 Гц

Несмотря на контроль, установленный иллюминатами со времен Гельмгольца и нациста Геббельса в том, что касается замены частоты 432 на 440, музыканты продолжают играть в независимой обстановке на частоте 432. Потому что идет уменьшение растяжения по струнам, барабанщик таким образом ослабляет немного кожу барабана, клавишнику легче настроиться на контроль.

Геббельс знал, что частота 432 имеет совершенный гармонический баланс. Это единственная частота, которая вызывает пифагорейскую музыкальную спираль, содержащую в себе знаменитый и неразгаданный КОД ПЛАТОНА.

Правда, недавно американский математик и историк науки Джей Кеннеди, который работает в Манчестерском университете в Великобритании, объявил, что взломал тайный код, скрытый в произведениях древнегреческого философа Платона. Как утверждает Кеннеди, Платон разделял пифагорейские представления о музыке сфер - неслышной музыкальной гармонии мироздания - и свои произведения строил по законам музыкальной гармонии.

«Один из самых знаменитых платоновских диалогов, “Государство”, разделён на двенадцать частей, по числу звуков в хроматической музыкальной гамме, представления о которой были у древних греков. Причём на каждый стык приходятся фразы, так или иначе относящиеся к музыке или звукам », - заявил исследователь.

Что собой представляют древние частоты сольфеджио? Это оригинальные звуковые частоты, используемые в древних григорианских песнопениях, например, таких как великий гимн Св. Иоанна Крестителя. Многие из них, как утверждают церковные власти, были потеряны много веков назад.

Эти мощные частоты были обнаружены доктором Джозефом Пулео. Это описано в книге «Целительные коды для биологического апокалипсиса» доктора Леонарда Горовица.

  • До - 396 Гц - Освобождение от чувства вины и страха
  • Ре - 417 Гц - Нейтрализация ситуаций и содействие изменениям
  • Ми - 528 Гц - Трансформация и чудеса (восстановление ДНК)
  • Фа - 639 Гц - Подключение и отношения
  • Соль - 741 Гц - Пробуждение Интуиции
  • Ля - 852 Гц - Возвращение к духовному порядку.

Частота 432 получается интересным образом 700: PHI = 432.624 Или вот 24 часа x 60 минут x 60 секунд = 864 | 000 864 / 2 = 432

Окружающая нас музыка не только отвлекает наше сознание, но и в обход него загружается напрямую в подсознание, трансформируя скрытую в нём информацию таким образом, чтобы людьми можно было управлять.

Сименс (обозначение: См, S) единица измерения электрической проводимости в системе СИ, величина обратная ому. До Второй мировой войны (в СССР до 1960 х годов) сименсом называлась единица электрического сопротивления, соответсвующая сопротивлению … Википедия

У этого термина существуют и другие значения, см. Беккерель. Беккерель (обозначение: Бк, Bq) единица измерения активности радиоактивного источника в Международной системе единиц (СИ). Один беккерель определяется как активность источника, в… … Википедия

Кандела (обозначение: кд, cd) одна из семи основных единиц измерения системы СИ, равна силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540·1012 герц, энергетическая сила света которого в этом… … Википедия

Зиверт (обозначение: Зв, Sv) единица измерения эффективной и эквивалентной доз ионизирующего излучения в Международной системе единиц (СИ), используется с 1979 г. 1 зиверт это количество энергии, поглощённое килограммом… … Википедия

У этого термина существуют и другие значения, см. Ньютон. Ньютон (обозначение: Н) единица измерения силы в Международной системе единиц (СИ). Принятое международное название newton (обозначение: N). Ньютон производная единица. Исходя из второго… … Википедия

У этого термина существуют и другие значения, см. Сименс. Сименс (русское обозначение: См; международное обозначение: S) единица измерения электрической проводимости в Международной системе единиц (СИ), величина обратная ому. Через другие… … Википедия

У этого термина существуют и другие значения, см. Паскаль (значения). Паскаль (обозначение: Па, международное: Pa) единица измерения давления (механического напряжения) в Международной системе единиц (СИ). Паскаль равен давлению… … Википедия

У этого термина существуют и другие значения, см. Тесла. Тесла (русское обозначение: Тл; международное обозначение: T) единица измерения индукции магнитного поля в Международной системе единиц (СИ), численно равная индукции такого… … Википедия

У этого термина существуют и другие значения, см. Грей. Грей (обозначение: Гр, Gy) единица измерения поглощённой дозы ионизирующего излучения в Международной системе единиц (СИ). Поглощённая доза равна одному грею, если в результате… … Википедия

У этого термина существуют и другие значения, см. Вебер. Вебер (обозначение: Вб, Wb) единица измерения магнитного потока в системе СИ. По определению, изменение магнитного потока через замкнутый контур со скоростью один вебер в секунду наводит в… … Википедия