Что такое микропроцессор, микроконтроллер и программируемый логический контроллер. Чем микроконтроллер отличается от микропроцессора Приложения микропроцессора и микроконтроллера

В составе многих современных цифровых устройств есть микроконтроллер и микропроцессор. Что представляют собой данные электронные компоненты?

Что такое микроконтроллер?

Под микроконтроллером понимается электронный компонент, содержащий в себе основные аппаратные модули, необходимые для выполнения им своих функций. Такие как, например:

  • вычислительный чип;
  • модуль ПЗУ;
  • модуль ОЗУ;
  • таймер;
  • мосты;
  • регулятор напряжения;
  • порты ввода и вывода.

Таким образом, все соответствующие компоненты являются встроенными. Микроконтроллер, если он устанавливается в компьютере, чаще всего взаимодействует с другими аппаратными модулями ПК (например, жестким диском или оперативной памятью) напрямую и не применяет без особой надобности модули в ПК, аналогичные по назначению тем, что встроены в девайс.

Так, благодаря встроенному модулю, отвечающему за управление напряжением, микроконтроллер не требует адаптации внешнего напряжения к особенностям питания внутренних компонентов и в общем случае не использует внешних компонентов контроля над уровнем напряжения.

Микроконтроллеры, как правило, отвечают за какую-либо часть вычислительных операций. Например, если они стоят на ПК, это может быть чтение и запись данных, включение и выключение устройств, подключенных к ПК. Поэтому их производительность относительно невысока.

Часто микроконтроллер используется в приборах, в которых задействование микропроцессора не имеет особого смысла в силу его более высокой в большинстве случаев стоимости. Например, это может быть микроволновая печь, кондиционер или устройство, предназначенное для автоматического полива растений в саду. В составе отмеченных девайсов обычно присутствует самый простой по структуре микроконтроллер.

Что такое микропроцессор?

Под микропроцессором принято понимать микросхему, основным компонентом которой является кристалл из кремния или другого полупроводника. По сути, это в несколько раз более мощный, чем тот, что установлен в микроконтроллере, вычислительный чип. Но на этом сходства между рассматриваемыми типами электронных компонентов заканчиваются.

Микропроцессоры, как правило, не укомплектованы большим количеством дополнительных компонентов (как микроконтроллеры) и используют преимущественно внешние устройства в целях выполнения своих функций. Это могут быть модули ОЗУ, регуляторы напряжения или отдельные источники питания, порты ввода и вывода. В принципе, данные компоненты те же по назначению, что и в случае с контроллерами, но внешние. Однако, как и сам вычислительный чип микропроцессора, в большинстве случаев более производительные, чем те, что стоят в микроконтроллере.

Внутренних модулей у процессора немного. Как правило, современные модели электронных компонентов рассматриваемого типа содержат микросхему ОЗУ - из тех типов компонентов, что характерны для конструкции микроконтроллера. ПЗУ, регулятор напряжения, порты в структуре микропроцессора обычно отсутствуют.

Главное предназначение микропроцессора - сложные вычислительные операции. Поэтому он, как правило, обладает большой производительностью и инсталлируется в те девайсы, функционал которых ее требует. Например, в игровые приставки, ПК, мобильные устройства.

Сравнение

Основное отличие микроконтроллера от микропроцессора в том, что в первом компоненте основные модули, необходимые для выполнения им своих функций, - встроенные. Микропроцессор, в свою очередь, задействует по большей части внешние устройства. Вместе с тем микроконтроллер также способен обращаться к их ресурсам, если производительности тех, что являются встроенными, не хватает. Разумеется, это возможно, только если соответствующего типа внешние устройства предусмотрены в конструкции девайса, в котором используется микроконтроллер. Бывает, что их нет в принципе, - и тогда эффективность работы прибора зависит от производительности микроконтроллера.

Между двумя рассматриваемыми электронными компонентами, как правило, есть существенная разница по уровню скорости вычислений. Микроконтроллер в большинстве случаев менее производителен, чем микропроцессор аналогичного назначения (если, конечно, они взаимозаменяемы в конкретном устройстве), поскольку рассчитан на выполнение только части вычислительных операций или же тех, что имеют очень простую структуру.

Определив, в чем разница между микроконтроллером и микропроцессором, зафиксируем выводы в таблице.

Таблица

Микроконтроллер Микропроцессор
Что общего между ними?
Вычислительный чип, который входит в состав микроконтроллера, может выполнять функции, схожие с теми, что характерны для микропроцессора
В чем разница между ними?
Использует для выполнения функций главным образом встроенные аппаратные модули Применяет в основном внешние аппаратные модули
Имеет относительно невысокую производительность, отвечает, как правило, за часть вычислительных операций устройства, в котором установлен Характеризуется высокой производительностью и потому в устройстве, в котором установлен, нередко является главной микросхемой
Часто выступает более выгодной альтернативой процессору (если от микроконтроллера не требуется высокой производительности), но, в принципе, может быть им заменен Считается более производительной альтернативой контроллеру, но, как правило, не может быть им заменен при выполнении своих функций - поскольку производительности второго может оказаться недостаточно

Мы пребываем в неком замешательстве, когда нас спрашивают о различии между микропроцессорами и микроконтроллерами. Вроде бы одинаковые они, но это не так. Итак обсудим их и разберем основные различия.

Микроконтроллер

Это как маленький компьютер на одной микросхеме. Он содержит ядро процессора, ПЗУ, ОЗУ и порты ввода/вывода, которые отвечают за выполнение различных задач. Микроконтроллеры обычно используются в проектах и приложениях, которые требуют прямого управления пользователя. Так как он имеет все компоненты, необходимые в одном чипе, он не нуждается в каких-либо внешних цепей, чтобы сделать свою задачу, так микроконтроллеры часто используются во встраиваемых системах и основные микроконтроллеры производства компании делают их применение на рынке встраиваемых решений. Микроконтроллер можно назвать сердцем встроенных систем. Некоторые примеры популярных микроконтроллеров: 8051, АВР, серия pic.

Выше архитектуры 8051 микроконтроллера. И вы можете видеть все необходимые компоненты для небольшого проекта присутствуют в одном чипе.

Микропроцессор имеет только процессор внутри них в одной или нескольких интегральных схем. Как и микроконтроллеры не имеют оперативной памяти, ROM и другие периферийные устройства. Они зависят от внешних цепей периферийных устройств к работе. Но микропроцессоры делаются не для конкретной задачи, а они необходимы там, где задачи являются сложными и хитрыми, как Разработка программного обеспечения, игр и других приложений, требующих большого объема памяти и где вход и выход не определены. Его можно назвать сердцем компьютерной системы. Некоторые примеры являются микропроцессор Pentium, i3, и i5, и т. д.

Из этого образа архитектуры микропроцессоров можно легко увидеть, что это есть регистры и АЛУ в качестве устройства обработки и не имеет оперативной памяти, ПЗУ в нем.

Итак, в чем разница между микропроцессором и микроконтроллером?

1. Ключевым отличием в них является наличие внешнего периферийного устройства, в микроконтроллерах ОЗУ, ПЗУ, ЭСППЗУ встроенные в него, в случае микропроцессоров мы должны использовать внешние цепи.

2. Вся периферийного микроконтроллера собрана на одном кристалле она компактна, в то время как микропроцессор является громоздким.

3. Микроконтроллеры изготавливаются с использованием комплементарных металл-оксид-полупроводниковой технологии, поэтому они гораздо дешевле, чем микропроцессоры. Кроме того, заявления, что микроконтроллеры дешевле, потому что они нуждаются в меньших внешних компонентов, в то время как общая стоимость системы с микропроцессорами высокая из-за большого числа внешних компонентов, необходимых для таких устройств.

4. Скорость обработки данных микроконтроллеров составляет около 8 МГц до 50 МГц, но в отличие от скорости обработки из микропроцессоров выше 1 ГГц, поэтому они работают намного быстрее, чем микроконтроллеры.

5. Как правило, микроконтроллеры имеют энергосберегающие системы, как режим ожидания или режим экономии энергии, поэтому в целом он использует меньше энергии, а также с внешними компонентами используют низкое общее потребление мощности. В то время как в микропроцессорах, как правило, отсутствует система энергосбережения, а также многие внешние компоненты используются с ним, так что его энергопотребление высокое по сравнению с микроконтроллерами.

6. Микроконтроллеры являются компактными, поэтому этот параметр делает их выгодным и эффективным в системах для малых продуктов и приложений в то время как микропроцессоры являются громоздкими, поэтому они предпочтительны для больших изделий.

7. Задачи, выполняемые микроконтроллером ограничены и, как правило, менее сложные. Хотя задачи, выполняемые микропроцессорами являются: Разработка программного обеспечения, разработка игр, сайтов, оформление документов и т. д. которые, как правило, более сложные, поэтому требуют больше памяти и скорости, поэтому внешнее ПЗУ, ОЗУ используются с ним.

8. Микроконтроллеры основаны на Гарвардской архитектуре памяти программ и памяти данных, где находятся отдельные микропроцессоры, а основаны на фон Неймановской модели, где программы и данные хранятся в одной памяти модуля.

Выбор подходящего устройства, на котором будет основана ваша новая разработка, бывает не простым. Необходимо найти баланс между ценой, производительностью и энергопотреблением, а также учесть долгосрочные последствия этого выбора. Например, если используемое устройство, будь то микроконтроллер или микропроцессор, станет основой целого ряда новых продуктов.

Чем отличается микропроцессор и микроконтроллер?

Для начала давайте рассмотрим разницу между микроконтроллером (MCU) и микропроцессором (MPU). Обычно микроконтроллер использует встроенную флэш память, в которой хранятся и выполняется его программа. Благодаря этому, микроконтроллер имеет очень короткое время запуска и может выполнять код очень быстро. Единственное ограничение при использовании встроенной памяти - это ее конечный объем. Большинство микроконтроллеров, доступных на рынке, имеют максимальный объем флэш памяти ~2 мегабайта. Для некоторых приложений это может оказаться критическим фактором.

Микропроцессоры не имеют ограничений на размер памяти, поскольку для хранения программы и данных они используют внешнюю память. Программа обычно хранится в энергонезависимой памяти, такой как NAND или последовательная флэш память. При запуске программа загружается во внешнюю динамическую оперативную память и затем выполняется. Микропроцессор не способен запускаться так же быстро, как микроконтроллер, но объем оперативной и энергонезависимой памяти, которую можно подключить к процессору, может достигать сотен и даже тысяч мегабайт.

Другое отличие между микроконтроллером и микропроцессором - это система питания. Благодаря встроенному регулятору напряжения, микроконтроллеру необходимо только одно значение внешнего напряжения. Тогда как микропроцессору требуется несколько разных напряжений для ядра, периферии, портов ввода-вывода и т.д. О наличии этих напряжений на плате должен заботиться разработчик.

Что выбрать MPU или MCU?

Выбор микроконтроллера или микропроцессора определяется некоторыми аспектами спецификации разрабатываемого устройства. Например, требуется такое количество периферийный интерфейсных каналов, которое не может предоставить микроконтроллер. Или требования относительно пользовательского интерфейса невозможно выполнить, используя микроконтроллер, потому что у него не хватает памяти и быстродействия. Приступая к первой разработке, мы знаем, что продукт в дальнейшем может сильно измениться. В этом случае возможно лучшим решением будет использование какой-то готовой платформы. Так мы учтем запас вычислительной мощности и интерфейсных возможностей для будущих модификаций устройства.

Один из аспектов, которые сложно определить, это быстродействие, требуемое для работоспособности будущей системы. Количественно оценить этот критерий можно с помощью так называемой вычислительной мощности, которая измеряется в Dhrystone MIPS или DMIPS (Dhrystone - это синтетический тест производительности компьютеров, а MIPS - количество миллионов инструкций в секунду). Например, микроконтроллер Atmel SAM4 на базе ядра ARM Cortex-M4 обеспечивает 150 DMIPS, а микропроцессор на ядре ARM Cortex-A5, такой как Atmel SAM5AD3 может обеспечить до 850 DMIPS. Один из способов оценить требуемый DMIPS - это посмотреть какая производительность нужна для запуска части приложения. Запуск полноценной операционной системы (Linux, Android или Windows CE) для работы вашего приложения потребовал бы около 300 - 400 DMIPS. А если использовать для приложения RTOS, то достаточно всего 50 DMIPS. При использовании RTOS также требуется меньше памяти, поскольку ядро обычно занимает несколько килобайт. К сожалению полноценная операционная система требует для своего запуска блок управления памятью (MMU), что в свою очередь ограничивает тип процессорных ядер, которые могут быть использованы.

Для приложений, которые обрабатывают большие объемы чисел, требуется определенный запас DMIPS. Чем больше приложение ориентировано на числовую обработку, тем выше вероятность использования микропроцессора.

Серьезного обсуждения требует использование пользовательского интерфейса, будь то бытовая или промышленная электроника. Потребителям уже привычно пользоваться интуитивно понятными графическими интерфейсами, да и в промышленности все чаще используется этот метод взаимодействия с оператором.

Существует несколько факторов относительно пользовательского интерфейса. Во-первых, это дополнительная вычислительная нагрузка. Для такой интерфейсной библиотеки как Qt, которая широко используется на Linux`e, дополнительно потребуется 80-100 DMIPS. Во-вторых - это сложность пользовательского интерфейса. Чем больше вы используете анимации, эффектов и мультимедийного содержимого, чем выше разрешение изображения, тем большая производительность и память вам потребуется. Поэтому вероятнее всего здесь подойдет микропроцессор. С другой стороны, простой пользовательский интерфейс со статическим изображением на дисплее низкого разрешения может быть реализован и на микроконтроллере.

Другой аргумент в пользу микропроцессора - это наличие встроенного TFT LCD контроллера. Мало микроконтроллеров имеют в своем составе такой модуль. Можно поставить внешний TFT LCD контроллер и какие-то другие драйверы к микроконтроллеру, но нужно учитывать получаемую в итоге себестоимость изделия.

На рынке сейчас появляются флэш микроконтроллеры с TFT LCD контроллерами, но все же должно быть достаточное количество встроенной оперативной памяти для управления дисплеем. Например, 16-цветный QVGA 320х240 требует 150 кБ оперативной памяти чтобы выдавать изображение и обновлять дисплей. Это довольно большой объем ОЗУ и может потребоваться внешняя память, что тоже скажется на себестоимости.

Более сложные графические пользовательские интерфейсы, особенно использующие дисплеи размером больше 4,3 дюйма, требуют применения микропроцессоров. Если микропроцессоры доминируют в приложениях, где используется пользовательский интерфейс с цветным TFT экраном, то микроконтроллеры - короли сегментных или точечно-матричных LCD и других экранов с последовательным интерфейсом.

С точки зрения коммуникаций, большинство микроконтроллеров и микропроцессоров имеют в своем составе наиболее популярные . Но высокоскоростные интерфейсы, такие как HS USB 2.0, 10/100 Мбит/с Ethernet порты или гигабитные Ethernet порты, обычно есть только у микропроцессоров, потому что они лучше приспособлены к обработке больших объемов данных. Ключевой вопрос здесь - это наличие подходящих каналов и полосы пропускания для обработки потока данных. Приложения, использующие высокоскоростные подключения и ориентированные на операционную систему, требуют применения микропроцессоров.

Другой ключевой аспект, определяющий выбор между микроконтроллером и микропроцессором, это требование по детерминированному времени реакции приложения. Из-за процессорного ядра, встроенной флэш памяти и программного обеспечения в виде RTOS (операционной системы реального времени) или чистого Си кода, микроконтроллер будет определенно лидировать по этому критерию.

Заключительная часть нашего обсуждения будет касаться энергопотребления. Хотя у микропроцессора есть режимы пониженного энергопотребления, у типичного микроконтроллера их намного больше. Кроме того, внешнее аппаратное обеспечение микропроцессора осложняет его перевод в эти режимы. Фактическое потребление микроконтроллера значительно ниже, чем микропроцессора. Например, в режиме энергосбережения с сохранением регистров и оперативной памяти, микроконтроллер может потреблять в 10-100 раз меньше.

Заключение

Выбор между микроконтроллером и микропроцессором зависит от многих факторов, таких как производительность, возможности и бюджет разработки.

Вообще говоря, микроконтроллеры обычно используются в экономически оптимизированных решениях, где важное значение имеет стоимость изделия и энергосбережение. Они, например, широко используются в приложениях с ультра низким энергопотреблением, где требуется длительное время работы от батарей. Например, в пультах дистанционного управления, потребительских электросчетчиках, охранных системах и т.п. Также они используются там, где необходима высоко детерминированное поведение системы.

Микропроцессоры, как правило, применяются для создания функциональных и высокопроизводительных приложений. Они идеально подходят для промышленных и потребительских приложений на основе операционных систем, где интенсивно используются вычисления или требуется высокоскоростной обмен данными или дорогой пользовательский интерфейс.

И последнее. Выбирайте поставщика, предлагающего совместимые микроконтроллеры или микропроцессоры, чтобы иметь возможность мигрировать вверх или вниз, увеличивая повторное использование программного обеспечения.

Удивительно, как небольшая часть технологии изменила лицо персональных компьютеров. С первого коммерческого микропроцессора (4-бит 4004), который был разработан Intel в 1971 году для более продвинутого и универсального 64-битного Itanium 2, микропроцессорная технология перешла в совершенно новую сферу архитектуры следующего поколения. Достижения в области микропроцессорной техники сделали персональные вычисления более быстрыми и надежными, чем когда-либо прежде. Если микропроцессор является сердцем компьютерной системы, микроконтроллер - это мозг. Как микропроцессор, так и микроконтроллер часто используются в синонимах друг друга из-за того, что они имеют общие функции и специально разработаны для приложений реального времени. Однако у них есть и их доля различий.

Что такое микропроцессор?

Микропроцессор - это интегрированный чип на основе кремния, имеющий только центральный процессор. Это сердце компьютерной системы, которая предназначена для выполнения множества задач, связанных с данными. Микропроцессоры не имеют RAM, ROM, IO контактов, таймеров и других периферийных устройств на чипе. Они должны быть добавлены извне, чтобы сделать их функциональными. Он состоит из ALU, который обрабатывает все арифметические и логические операции; блок управления, который управляет и управляет потоком инструкций по всей системе; и Register Array, который хранит данные из памяти для быстрого доступа. Они предназначены для приложений общего назначения, таких как логические операции в компьютерной системе. Проще говоря, это полностью функциональный процессор на единой интегральной схеме, который используется компьютерной системой для выполнения своей работы.

Что такое микроконтроллер?

Микроконтроллер похож на мини-компьютер с процессором, а также RAM, ROM, последовательные порты, таймеры и периферийные устройства ввода-вывода, встроенные в один чип. Он предназначен для выполнения конкретных задач, требующих определенной степени контроля, таких как пульт телевизора, светодиодная панель дисплея, интеллектуальные часы, транспортные средства, управление светофором, контроль температуры и т. Д. Это высококачественное устройство с микропроцессор, память и порты ввода / вывода на одном чипе. Это мозги компьютерной системы, которые содержат достаточно схем для выполнения определенных функций без внешней памяти. Поскольку в нем отсутствуют внешние компоненты, потребляемая мощность меньше, что делает его идеальным для устройств, работающих на батареях. Простой разговор, микроконтроллер - это полная компьютерная система с меньшим внешним оборудованием.

Разница между микропроцессором и микроконтроллером

1) Технология, используемая в микропроцессоре и микроконтроллере

Микропроцессор - это программируемый многоцелевой кремниевый чип, который является наиболее важным компонентом в компьютерной системе. Это, как сердце компьютерной системы, состоящее из ALU (Арифметической логической единицы), блока управления, декодеров команд и массива регистров. Микроконтроллер, с другой стороны, является сердцем встроенной системы, которая является побочным продуктом микропроцессорной технологии.

2) Архитектура микропроцессора и микроконтроллера

Микропроцессор - это просто интегральная схема без ОЗУ, ПЗУ или контактов ввода / вывода. В основном это относится к центральному процессору компьютерной системы, который извлекает, интерпретирует и выполняет команды, переданные ему. Он включает функции ЦП в единую интегральную схему. Микроконтроллеры, с другой стороны, являются более мощными устройствами, которые содержат схему микропроцессора и имеют ОЗУ, IO и процессор в одном чипе.

3) Работа микропроцессора и микроконтроллера

Для микропроцессора требуется внешняя шина для подключения к периферийным устройствам, таким как RAM, ROM, Analog и Digital IO, а также последовательные порты. ALU выполняет все арифметические и логические операции, поступающие с устройств памяти или ввода, и выполняет результаты на выходных устройствах. Микроконтроллер представляет собой небольшое устройство со всеми периферийными устройствами, встроенными в один чип, и предназначен для выполнения определенных задач, таких как выполнение программ для управления другими устройствами.

4) Память данных в микропроцессоре и микроконтроллере

Память данных является частью ПОС, которая содержит регистры специальных функций и регистры общего назначения. Он временно хранит данные и сохраняет промежуточные результаты. Микропроцессоры выполняют несколько инструкций, которые хранятся в памяти и отправляют результаты на выход. Микроконтроллеры содержат один или несколько процессоров вместе с ОЗУ и другими периферийными устройствами. CPU извлекает инструкции из памяти и выполняет результаты.

5) Хранение в микропроцессоре и микроконтроллере

Микропроцессоры основаны на архитектуре фон Неймана (также известной как модель фон Неймана и архитектура Принстона), в которой блок управления получает команды, назначая управляющие сигналы аппаратным средствам и декодирует их. Идея состоит в том, чтобы хранить инструкции в памяти вместе с данными, на которых действуют инструкции. Микроконтроллеры, с другой стороны, основаны на архитектуре Гарварда, где инструкции и данные программы хранятся отдельно.

6) Приложения микропроцессора и микроконтроллера

Микропроцессоры представляют собой устройство массовой памяти с одним чипом и встроены в несколько приложений, таких как контроль спецификации, управление светофором, контроль температуры, тестовые инструменты, система мониторинга в реальном времени и многое другое.Микроконтроллеры в основном используются в электрических и электронных схемах и устройствах с автоматическим управлением, таких как высококачественные медицинские инструменты, системы управления автомобильным двигателем, солнечные зарядные устройства, игровой автомат, управление светофором, промышленные устройства управления и т. Д.

Микропроцессор против микроконтроллера: сравнительная таблица

Резюме микропроцессора и микроконтроллера

Ключевое различие между этими терминами заключается в наличии периферийных устройств. В отличие от микроконтроллеров, микропроцессоры не имеют встроенной памяти, ПЗУ, последовательных портов, таймеров и других периферийных устройств, которые составляют систему. Для взаимодействия с периферийными устройствами требуется внешняя шина. С другой стороны, микроконтроллер имеет все периферийные устройства, такие как процессор, оперативная память, ПЗУ и IO, встроенные в один чип. Он имеет внутреннюю управляющую шину, которая недоступна дизайнеру. Поскольку все компоненты упакованы в один чип, он компактный, что делает его идеальным для крупномасштабных промышленных применений. Микропроцессор - это сердце компьютерной системы, а микроконтроллер - это мозг.


Ключевое отличие : Разница между микропроцессором и микроконтроллером заключается в наличии ОЗУ, ПЗУ и других периферийных устройств в микроконтроллере. Микропроцессор содержит только процессор и не имеет других компонентов.

Микропроцессор и микроконтроллер, оба являются основными процессорами, предназначенными для работы компьютеров. Функции обоих процессоров одинаковы. Основное различие между ними состоит в том, что микропроцессоры выполняют различные функции, тогда как микроконтроллеры - это небольшие компьютеры, предназначенные для конкретных задач. Эта статья помогает найти больше различий между двумя процессорами.

Микропроцессоры обычно называются центральным процессором или процессором микрокомпьютера. Говорят, что это сердце и мозг компьютеризированной машины.

Микропроцессор необходим для выполнения множества задач. Это небольшой компьютер, который используется для выполнения арифметических и логических операций, таких как управление системой, хранение данных и т. Д. Микропроцессор обрабатывает входные или выходные данные периферийных устройств и дает функцию для возврата результатов. Первый коммерческий микропроцессор был выпущен Intel в ноябре 1971 года и получил название 4004; это был 4-битный микропроцессор.

Операции, выполняемые микропроцессором, являются общими по своему назначению. Поэтому считается необходимым выполнять любые логические операции на компьютеризированной машине. Микропроцессоры настроены на микросхемы; он изготовлен из миниатюрных транзисторов и некоторых других элементов схемы на одиночной полупроводниковой ИС для выполнения своих задач в компьютере. Он сокращенно обозначается как «µP» или «uP». Существует пять основных типов процессоров:

  • Комплексный набор инструкций микропроцессоров
  • Микропроцессоры с уменьшенным набором команд
  • Суперскалярные процессоры
  • Специализированная интегральная схема
  • Цифровые сигнальные мультипроцессоры

Микроконтроллер - это встроенный компьютер, оптимизированный для управления электрическими устройствами. Это устройство, которое включает в себя микропроцессор, память и устройства ввода / вывода на одной микросхеме. Говорят, что это сердце встроенной системы.

Микроконтроллеры имеют специфическую природу для задачи, которую они должны выполнить. Он имеет микропроцессор на своей плате для выполнения всех логических операций гаджета. После того, как микроконтроллер запрограммирован, он может работать самостоятельно с сохраненным набором инструкций и может выполнять операции или задачи по мере необходимости. Это предназначено, чтобы быть самодостаточным и прибыльным. Кроме того, микроконтроллер представляет собой набор дробей в системе, который является фундаментальным для комплектации печатной платы. «Фиксированная компьютерная система» предназначена для выполнения одной или нескольких функций снова и снова в режиме реального времени. Эта система встроена как элемент в аппаратные средства и моторизованные элементы компьютеризированной машины.

Микроконтроллеры предназначены для выполнения определенных операций, которые помогают управлять конкретными системами. Он сокращенно обозначен как «uC», «µC» или «MCU».

Микроконтроллеры похожи на небольшой компьютер, в котором ЦП, блок памяти, такой как ОЗУ и ПЗУ, периферийные устройства ввода / вывода, таймеры, счетчики, встроены в одну интегральную схему, т.е. IC. Они легко подключаются к внешним периферийным устройствам, таким как последовательные порты, АЦП, ЦАП, Bluetooth, Wi-Fi и т. Д. Здесь процесс сопряжения происходит быстрее по сравнению с сопряжением микропроцессора. В большинстве случаев микроконтроллеры используют архитектуру RISC или CISM для выполнения задач на разных машинах. Различные типы микроконтроллеров:

  • 8-битный микроконтроллер
  • 16-битный микроконтроллер
  • 32-битный микроконтроллер
  • Встроенный микроконтроллер
  • Встроенный микроконтроллер

Сравнение между микропроцессором и микроконтроллером:

Микропроцессор

микроконтроллер

Это сердце компьютерной системы.

Это сердце встроенной системы.

Содержит

Он содержит ЦП, регистры общего назначения, указатели стека, счетчики программ, тактовую синхронизацию и схемы прерываний.

Он содержит схему микропроцессора и имеет встроенные ПЗУ, ОЗУ, устройства ввода-вывода, таймеры и счетчики.

Память данных

Он имеет много инструкций для перемещения данных между памятью и процессором.

Он имеет одну или две инструкции для перемещения данных между памятью и процессором.

Это большой.

Это небольшое.

Стоимость

Стоимость всей системы увеличивается.

Стоимость всей системы низкая.

Битовые инструкции

Он имеет одну или две инструкции по обработке битов.

Он имеет много инструкций по обработке битов.

Регистрационные номера

Имеет меньшее количество регистров; следовательно, операции основаны на памяти.

У этого есть больше количества регистров; следовательно, программы легче писать.

Место хранения

Он основан на архитектуре фон Неймана, где программа и данные хранятся в одном модуле памяти.

Он основан на архитектуре Гарварда, где память программ и память данных хранятся в отдельном модуле.

Время доступа к памяти и устройствам ввода / вывода больше.

Меньше времени доступа к встроенной памяти и устройствам ввода / вывода.

аппаратные средства

Это требует больше оборудования.

Это требует меньше оборудования.